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Abstract

High-pressure density data for cyclohexane + n-hexadecane mixtures at a wide temperature range was modeled with several classical equations
of state (EOS) and correlative models. A modification for softening the co-volume and another for a volume scaling of the Peng—Robinson EOS
(VS-PR) were proposed. The VS-PR model is able to correlate the pure component experimental data employing only five adjustable parameters,
with root-mean-square deviation (RMSD) between calculated and experimental densities essentially within the experimental error. This result is
superior to widely used approaches, i.e., a six parameter Tait model and six parameter volume translations (temperature and pressure dependent)
for Peng—Robinson and Patel-Teja EOS. The VS-PR model also represents well the isobaric thermal expansion and the isothermal compressibility
coefficients of the pure cyclohexane, a small naphthenic substance as well as a long chain n-alkane hydrocarbon, n-hexadecane. When modeling
the mixture data, the use of VS-PR model of pure components along with the Redlich—Kister expansion, truncated at the first term, the density was
correlated within a RMSD only 60% greater than the experimental error. The proposed model is able to accurately represent all the tested mixture

data with a relatively small number of parameters.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The knowledge of the relation between thermophysical prop-
erties of mixtures and its composition is relevant in design,
operation, control and optimization of industrial processes. In
this sense, the knowledge of the behavior of mixture proper-
ties as a function of composition, temperature, pressure, and
chemical nature of its constituents is a central question in ther-
modynamic modeling. Among the applications, this knowledge
may be employed when using thermophysical properties as
process sensors; and has been used traditionally in the character-
ization of complex mixtures [1], such as petroleum containing
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mainly non-polar substances like long chain alkane, naphthenic,
and aromatic compounds, with a wide range of carbon numbers
[2].

Among the thermophysical properties, density is especially
important due to several formal relations between volumet-
ric properties and other thermodynamic properties [3], besides
the relations between density and other thermophysical prop-
erties. For instance, an accurate modeling of density data at
different conditions allows the correct and simple computa-
tional extrapolation and interpolation of density as well as other
thermodynamic functions such as specific heats.

The accurate modeling of density over a wide range of tem-
perature and pressure is a challenging task, even for pure simple
fluids. One important reason is the great impact of stiffness of
the repulsive potential on density at high densities, which is not
easily modeled by traditional approaches [4-6]. As an exam-
ple of this difficulty, Pitzer and Sterner modeled densities of
pure water and carbon dioxide over a large pressure range [4]
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with a multi-parameter equation. Twenty-eight parameters were
needed to correlate carbon dioxide data and 27 for water which is
not suitable for many engineering applications. Following Gre-
gorowicz et al. [6], many multi-parameters equations are able
to accurately represent density data, showing important exper-
imentally observed density extrema, such as in the isothermal
variation of the isochoric heat capacity, of the isothermal com-
pressibility, speed of sound, and isobaric expansivity, which is
not the case when simple models are employed [5,6]. In this
work, a method is sought to improve the accuracy of simple
models without enhancing significantly the number of parame-
ters in the equation. A useful way to obtain better results from
simple models based on repulsive and attractive contributions is
to introduce a temperature-dependence for the co-volume [6].

Hemptinne and Ungerer [7] tested five equations of state
(EOS) in the calculation of hydrocarbons high-pressure density.
The EOS tested were Peng—Robinson EOS [8], volume trans-
lated Peng—Robinson, following the approach of Penéloux et
al. [9], SBR EOS [10], chain-of-rotators EOS [11], Lee—Kesler
model [12] and a modification of the last model. Hemptinne and
Ungerer [7] pointed out as better models the modified Lee-Kesler
model for small chains and chain-of-rotators EOS for higher
chains. In this comparison, relative errors of 2-3% were con-
sidered moderate, and errors greater than 4% were considered
high.

Sant’Ana et al. [13] compared temperature-dependent vol-
ume translation models for the prediction of hydrocarbon
densities. The model of Ungerer and Batut [14] was pointed
out as the most feasible choice, presenting relative deviations
from 0.64 to 2.43%.

Nasrifar et al. [15] presented a corresponding states model
for compressed liquid densities and compared their model with
the models of Yen and Woods [16]; Chueh and Prausnitz [17];
Brelvi and O’Connell [18]; Thomson et al. [19]; Lee and Liu
[20]; and Aalto et al. [21]. The authors [15] found their model
superior to the other models, in the case of hydrocarbons, refrig-
erants and some light gases. The overall relative deviation found
was 0.77%, while the deviations of the other models lied in the
range 1.0-2.2%. Later, Eslami and Azin [22] presented a model
for compressed liquid densities and compared their results with
the models of Thomson et al. [19] and Nasrifar et al. [15],
presenting accuracy similar to those obtained with the other
models.

Another approach relative to high-pressure densities is the
linear isotherms presented by Parsafar and Mason [23]. This
observation is included in the present work as a model suitable
for density calculations.

From this introduction, it can be noticed that the most accu-
rate simple models for high-pressure liquid density reviewed
here present deviations about 1% or slightly smaller, while
multi-parameter equations present deviations essentially within
experimental error [6]. In this sense, the actual simple models
are not satisfactory for highly accurate work, and the multi-
parameter models are not suitable for engineering applications
which need fast implementations and calculations. This points
out the importance in improving of the accuracy through simple
models.

1.1. Objective

The objective of this work was to evaluate the performance
of correlative simple models in order to represent high-pressure
densities and its derivative with temperature and pressure as
close to experimental errors as possible, and also propose a new
correlative volume scaled model. Once model parameters were
estimated from experimental data, the number of systems stud-
ied was restricted in order to avoid excessive and unnecessary
parameter estimation.

1.2. Experimental densities and derived properties used in
this work

Recently, the authors of this work obtained high pres-
sure (up to 62.053 MPa) densities over a wide temperature
range (318.15-413.15K) for mixtures of cyclohexane and n-
hexadecane, including pure component data. The experimental
method and data are presented elsewhere [24].

This data was chosen to evaluate performances of the cor-
relations and EOS studied in this work, because in asymmetric
mixtures large differences in molecular shape, size or flexibility
could cause deviations in physical properties from ideal mixture
behavior, even for mixtures of non-polar substances [25]. Cyclo-
hexane is a small naphthenic molecule while n-hexadecane is a
long linear alkyl chain, leading to an asymmetrical mixture in
length and shape of components with close densities at ambient
conditions. High-pressure density for this mixture was presented
previously by Tanaka et al. [26], at only three temperatures. The
recent data [24] allows the study of density and derived prop-
erties of this mixture for a wider range of temperatures and
compositions.

The isobaric thermal expansion («) and the isothermal com-
pressibility (kt) coefficients, and excess volume (VE) were
derived from experimental [24] densities (p). These properties
are defined, respectively, in Eq. (1)—(3):

_ | 4In(o)

(P, T, x) = [8 oT ]Px )]
_ [.In(p)

kr(P, T, x) = {3 9P Lx @)

VE(P,T.x) = V(P, T, x) — 1 Vi(P, T) + x2Va(P, T))  (3)

where subscripts 1 and 2 stand for the pure components and V
is the molar volume.

2. Methodology

Several widely used multi-parameter empirical models for
pure component and mixtures selected for representing the
experimental behavior of density as a function of temperature
and pressure.

For pure components, a polynomial model for isobaric ther-
mal expansion and isothermal compressibility coefficients was
used. The degree of the polynomial was chosen by observing
the experimental trends. For mixtures, the Redlich—Kister [27]
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expansion was used. The number of terms in the expansion and
the form of dependence of coefficients on temperature and pres-
sure were chosen after examining the experimental data. As this
expansion leads to root-mean-square deviations (RMSD) essen-
tially within experimental uncertainty, both for pure component
and mixtures, it was used as a benchmark for evaluating the
performance of other models.

The following widely used multi-parameters models were
evaluated: Tait model [28], Peng—Robinson EOS [8], Valder-
rama and Cisternas version of Patel-Teja EOS [29], linearity
model (linear isotherms) of Parsafar and Mason [23],
Peng—Robinson with volume translation and Patel-Teja EOS
with volume translation as well as Peng—Robinson and
Patel-Teja EOS with temperature dependent co-volume as pro-
posed by Gregorowicz et al. [6]. The volume scaling is proposed
in this work to obtain at least equal performance with fewer
parameters.

For evaluating original Peng—Robinson and Patel-Teja equa-
tions, the necessary input parameters- critical temperature,
critical pressure, acentric factor (Peng—Robinson) and critical
compressibility factor (Patel-Teja) were obtained from [30]. In
general, the evaluated models had five or six adjustable param-
eters, with the exception of the soft co-volume Peng—Robinson,
which employs four parameters. The widely used models with
six parameters presented a performance worse than the proposal
of this work (volume scaled Peng—Robinson, which employs five
parameters).

Besides RMSD (Eq. (4)), the average absolute relative devi-
ation (AAD, Eq. (5)) was also calculated in order to compare
with literature results:

N o calc exp, 2
0™ —p )
RMSD = - - 4
; v )
N Ic exp exp
(i —p; )/pi |
AAD = L L L 5
LR ®

i=1

where N is the number of points, i runs over experimental points
superscripts calc and exp stand for calculated and experimental,
respectively.

The parameter estimations procedure minimized RMSD
using the Simplex [31] numerical method. In order to avoid
local minimum solutions, the initial guesses for pure compo-
nent models parameters were obtained by applying the model in
the correlation of density as a function of pressure for each tem-
perature, and then the temperature dependence for the optimized
parameters was introduced and the parameters re-estimated. For
mixtures, the number of parameters was small in general, and
multiple initial guesses were tried.

3. Correlation of pure component high-pressure
densities

In this section, the pure component models evaluated in this
work are presented.

3.1. Empirical polynomial model from a and kr
(polynomial)

The density model is obtained after integration of Eq. (1) ata
given pressure P*, from a given temperature 7* to a temperature
T. A density value at 7* and P* must be known, and here values
presented by Amorim et al. [24] were used. The final step is to
integrate Eq. (2) from P* to a pressure P. The model equations
and the 12 adjustable parameters (a’s, b’s and c¢’s indices 0-2)
are presented as follows:

T, PY=d +bT+T? (6)

kr(T, P) = a(P) + b(P)T + c(P)T? (7

a(P) = af + P + b P?,
b(P) = bf + b P + b5 P2,
c(P) = cg + CIIDP + Cng (8)

3.2. Tait empirical model (Tait)

The Tait [28] model (Eq. (9)) was used with all adjustable
parameters as temperature dependent. This dependency (Eq.
(10)) was chosen after the initial guess procedure presented in
Section 2. The model has six (pg, ,0(1), By, B, Cp, C1) adjustable
parameters:

p°(T)
o(T, P) = )
{1+ C(T)In[(B(T)+0.1)/(B(T) + P)]}

po(T) = p) + pIT.  C(T)=Co+CIT,
B(T) = By + Bi T (10)

3.3. Empirical linearity between (Z— 1)V and p,zn
(linearity)

The Parsafar and Mason [23] isothermal linearity involv-
ing compressibility factor Z and the molar density p, may
be obtained from the virial expansion truncated at the fourth
coefficient, but neglecting the third one. In this work, the third
coefficient is also included, but not as a temperature func-
tion (Eq. (11)), in order to enhance model performance and
equalize the number of parameters. The temperature depen-
dences in Eq. (12) followed procedure presented in Section
2. ThLe model has five adjustable parameters, al(;, a'f, b%, blL
and c~:

(Z =1V =a(T) + b(T)p} + " pm (11)
L a% L b%
mn=am+7, Mn:by+7 (12)
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3.4. Peng—Robinson EOS (PR)

The equations for the original Peng—Robinson EOS are pre-
sented as follows:

RT  acll + k(1 = JT/T))

P:
V—-b V2 +2bV — b?

(13)

_0.4572355 (RT.)
= b

0.07779607RT,
Lob=——
C

3.5. Patel-Teja EOS (PT)

The Valderrama and Cisternas version of the Patel-Teja EOS
is given in Eq. (15) and (16):

RT  acll + k(1= VT/TOV

P = (15)
V—->b V2+(b+C)V—bC
(RT,)? RT,
ac = §2,(Z¢) , b= Qb(zc)Ta
P c
= 2.(Z 16
c o( c) Pc (16)

3.6. Volume translated Peng—Robinson EOS (PR-t)

The volume translation method [9,13] was applied to
Peng—Robinson EOS (superscript PR stands for original EOS)
with the translated volume (indicated by superscript t, Eq. (17))
a function of pressure and temperature, with these functions
obtained in the procedure described in Section 2, and given in
Egs. (18) and (19). The model has six adjustable pure component

PR PR PR PR
parameters (vh, vbR, PR, PR VER PRy

V(T, P) = VPR(T, P) — VX(T, P) (17)

VAT, P) = Vo(T) + Vi(T)P + Vo(T) P* (18)

Vo(T) = v + oiRT, V(1) = ! + iR T,

Va(T) = V5 + ViR T (19)

3.7. Volume translated Patel-Teja EOS (PT-t)

Follows procedure analogous to the previous model. The
model equations are

V(T, P) = VPI(T, P) — V\(T, P) (20)

VT, P) = Vo(T) + Vi(T)P + Va(T) P? 21

V()(T) = UOO + UOI T Vl(T) = UIO + Ull T
VZ(T) = Uzo + U21 T (22)

3.8. Peng—Robinson EOS with soft co-volume (PR-b)

In this approach, the co-volume is a function of temperature
in the same way as parameter a, and the critical temperature
and pressure are replaced by the adjustable parameters 7"} and

PR Also, the constant k is no longer related to acentric factor,
but is another adjustable parameter along with APR. The model
equations are

RT acll + kPR(1 — /T/eR)]”
P= — (23)
V — b(T) V2 4+ 26(T)V — b(T)?

VTR 24)

0.4572355(R‘L'PR)2 0.07779607 RtFR
PR ’ ¢ = PR

B(T) = be[1 + APR(1 —

(25)

ac =

3.9. Patel-Teja EOS with soft co-volume (PT-b)

Follows the same procedure of the previous model, and the
five adjustable parameters are T ZPT (PT 3 PT and {PT:

_RT [1 4+ KPT(1 — \/T/PD)]° 2
TVt “VIEWT) + oV — k(T (26)

— T @7

B(T) = be[1 + APT(1

T ( PT) T PT
ac = §2,(8) , b = $2v(¢ )

7PT”’

R7PT
— 0T

(28)

3.10. Scaled volume Peng—Robinson EOS (VS-PR)

Again the PR EOS was used in order to correlate the exper-
imental data, the original equations presented in Eqgs. (13) and
(14) being now replaced by Egs. (29) and (30) where, anal-
ogously to the procedure presented for the PR-b, the critical
constants are changed by adjustable parameters:

p_ RT _ [LRYSTRA = /TSR 29
“v_p * V24 2bV — b2
(R Vs_pR)z VS-PR
ac = 04572355, be = 007779607 e
(30)

Since this model could not accurately correlate the isobaric
thermal expansion in all ranges of pressure and simultaneously
correlate accurately the density data, the strategy adopted was
to obtain the model parameters (rVSPR 7 VSPR and kVSPR) 50
that kT was accurately correlated. It was found that the exper-
imental and the calculated density were directly proportional.
For this reason, a volume scaling function a*(T) was applied, as
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presented in Eq. (31), where M is the molecular weight:

calc EOS aS(T)
= — 31
P P i (€20
S S ai
a"(T) =y + =1 (32)

The proposal uses five adjustable parameters: VSR, 7VS-PR,

kVS-PRE ap and af.
4. Correlation of mixture high-pressure densities

This section presents the mixture models based on the
Redlich—Kister expansion and on the VS-PR model.

4.1. Empirical Redlich-Kister polynomial model for VE
(Redlich—Kister)

The Redlich—Kister expansion truncated at the second term
was used in order to correlate the experimental data of binary
mixtures, using a simple linear dependence with pressure, and
quadratic and linear dependences with temperature, as presented
in Egs. (33)—(36). This approach employed experimental pure
component data and ten adjustable parameters (a’s and b’s
indices 00, 01, 02, 10 and 11):

VE(P, T, x) = x1x2[ A(P, T) + B(P, T)(x1 — x2)] (33)
AP, T) = Ag(T)+A((T)P, B(P, T)=Bo(T)+Bi(T)P (34)

Ao(T) = ago + an T + aneT?,  A1(T) =ay+anT  (35)

Bo(T) = boo + b1 T +boaT?,  Bi(T) =bio+biiT  (36)

4.2. Redlich—Kister truncated at the first term
(Redlich—Kister 2)

A simplified version of the previous model was used by trun-
cating the Redlich—Kister expansion after the first term, which
was considered constant (one adjustable parameter for a binary
mixture):

VE(P, T, x) = x102A 37
4.3. VS-PR with mixing and combining rules (VS-PR mix)

The mixing rules used were

cl(T) = ZinXjaij(T), b= Zinij,-j,
J J

a*(T) = Zinxjafj(T) (38)
i

where i and j runs over all components, and the combining rules
were

aij(T) = /ai(Da;(T)(1 — kij) (39)

(I = 15ij)(bi + b))

bij = >

(40)

a;(T) + a¥(T)
2

The three adjustable parameters are kj;, [;; and m;;. As usual in
this approach, kii = l,’,’ =mj;= 0 and kij = kji; lij = lj,' and mjj = mjj.

ai(T) = (1 —mjj) (41)

4.4. VS-PR mix re-estimating pure component parameters
(VS-PR mix 2)

The previous approach was used also re-estimating the pure
components parameters, leading to thirteen parameters for a
binary mixture (five for each pure component, plus the three
k12, l12 and my2).

4.5. VS-PR with Redlich—Kister 2 (VS-PR mix 3)

A hybrid model was set up by using VS-PR for the pure com-
ponent calculation and Eq. (37) for a binary mixture calculation,
employing one adjustable parameter (A).

5. Results and discussion

This section presents the results separately for the pure and
the mixture models.

5.1. Pure component models

The RMSD between calculated and experimental [24] pure
components cyclohexane and n-hexadecane densities are pre-
sented in Table 1, obtained after estimation of the model
parameters. The regressed parameters are presented in Table 2.

As it can be observed, the Tait model presents deviations
of 1.5 and 2.0 times the reference deviation of Polynomial
correlation (for cyclohexane and n-hexadecane, respectively),
while linear isotherms model presents the values of 2.0 and
1.5. These performances are considered as in good agreement
with experimental data. The larger deviations occur for the

Table 1
RMSD between calculated and experimental pure component densities

Model Parameters? RMSD (kgm~?)
Cyclohexane n-Hexadecane

Polinomial 12 0.28 0.23
Tait 6 0.42 0.47
Linearity 5 0.56 0.34
PR 0 49.27 122.79
PT 0 28.10 84.33
PR-t 6 0.60 0.67
PT-t 6 0.64 0.70
PR-b 4 0.76 1.46
PT-b 5 0.31 0.85
PR-VS 5 0.30 0.27

2 Number of parameters estimated using the pure component data reported in
Ref. [24].
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Table 2

Parameters obtained with the models
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Parameter Cyclohexane n-Hexadecane
Polynomial
a (K™ 1.2454 x 1073 8.2081 x 1074
b (K72) —2.3272 x 1073 —1.0113 x 1073
¢ (K73) 2.1258 x 1077 4.6730 x 1078
ab (MPa™) 2.8380 x 1073 6.8319 x 1073
a’ MPa—'K™h —5.8596 x 10~° 4.8000 x 1073
a) (MPa~'K72) —1.0112 x 1076 —3.1334 x 1075
by, MPa~!K~!) —1.1700 x 1073 —3.5225 x 1073
bY (MPa~!K7?) 7.7127 x 1078 —2.9664 x 1077
by (MPa~!'K~%) 4.9754 x 1070 1.7618 x 1078
ey (MPa~!'K™?) 2.1438 x 1078 5.2277 x 10~8
¥ MPa~1K™?) —2.7779 x 10710 3.9049 x 1010
b (MPa~!' K™% —5.2887x 10712 —2.4281 x 10~1
Tait
o) (kgm™3) 1.0737 x 103 9.7118 x 102
A kgm3 K —1.0052 —6.8027 x 107!
By (MPa~!) 6.0819 x 10! —1.3895 x 10!
B; MPa~' K1) —6.6629 x 1072 1.8296 x 107!
Co —7.1563 x 1072 —1.2327 x 107!
Ci (K™ 42074 x 10~ 5.5227 x 1074
Linearity
a5 (m®mol™!) 5.9212 x 1073 5.6852 x 1072
at (m3 mol™! K) —4.5925 x 107! ~7.3981
b5 (m®mol™?) 1.0005 x 1010 4.9756 x 107°
bt /(m? mol > K1) 4.0618 x 10710 4.0780 x 1077
& (m® mol=2) —1.6871 x 1073 —1.3704 x 10~
PR-t
vbR (m? mol™") —2.7304 x 1076 9.5454 x 1073
vhR (m® mol ™' K~ —1.0224 x 1078 —1.0706 x 1077
ViR (m? mol=! MPa™1) 2.3892 x 1077 1.8087 x 1077
PR (m? mol ™! K~ MPa™!) —7.6150 x 10710 —4.9392 x 10710
vbR (m? mol~! MPa~2) —2.1654 x 10~° —1.8950 x 10~°
vbR (m? mol™! K~! MPa—2) 7.3042 x 10712 7.1697 x 10712
PT-t
vbd (m3mol™h) —1.3013 x 1076 7.7589 x 1073
vhl (m® mol™' K1) —6.5016 x 10~° —1.1560 x 1077
Wb (m3 mol~! MPa™1) 2.5142 x 1077 1.4476 x 1077
T (m3 mol~! K~! MPa~!) —8.0460 x 10710 —3.7086 x 10~1°
Wbl (m3 mol~! MPa=2) —2.2293 x 1070 —1.6801 x 10~°
vbT (m3 mol~! K~! MPa~2) 7.5078 x 10~12 6.4818 x 1012
PR-b
PR (K) 6.3531 x 102 7.6480 x 102
7R (MPa) 3.9696 1.5824
KPR 1.5485 x 107! 3.9321 x 107!
APR —1.7473 x 107! —2.0268 x 107!
PT-b
T (K) 6.4095 x 107 1.1514 x 103
7T (MPa) 7.0140 1.1026 x 10!
KPT 1.1690 1.8974 x 10!
APT —1.0914 x 107! —1.8168 x 107!
P 4.8778 x 107! 1.3086
VS-PR
TVSPR(K) 6.3258 x 10? 7.4904 x 102
7VSFR (MPa) 1.1997 x 10 3.3736 x 10!
KVSPR —8.6059 x 1072 —4.4141 x 107!
a$ (kgmol™") 3.1805 x 1072 1.5871 x 1072
@ (kgmol 'K~ 4.5999 x 107! —3.5436 x 107!

Table 2 (Continued )

Parameter Cyclohexane n-Hexadecane

VS-PR mix 2
TVSPR(K) 6.2890 x 102 7.5830 x 102
VSR (MPa) 1.9956 x 10! 4.1785 x 10!
kVSPR —2.4980 x 10~! —5.0870 x 10~!
ay (kgmol™h) 2.1365 x 1072 1.3451 x 1072
a; (kgmol™' K71 —1.830 x 107! —3.420 x 107!

PR EOS, followed by the PT EOS, which are respectively in
the order of 176 and 100 times the reference for cyclohexane,
and 534 and 367 times for n-hexadecane, which are very poor
results.

The volume translations for PR and PT EOS lead to
great improvement, with similar results for both substances,
presenting deviations 2.1 and 2.3 times the reference for cyclo-
hexane and 2.9 and 3.0 times for n-hexadecane. The soft
volume correction in the PR-b, with four parameters instead
of six in the volume translation, presented poorer perfor-
mance, with deviations 2.7 and 6.3 times the reference, while
for PT-b, with five parameters, the results were 1.1 and 3.7
times the reference value, respectively, for cyclohexane and
n-hexadecane.

The RMSD closest to the benchmark equation was obtained
by the VS-PR model, with deviations essentially within experi-
mental error, 1.1 and 1.2 times the reference error. Neither Tait
model nor volume translation was able to achieve the same per-
formance, even with one more parameter. For comparison with
literature results, the AAD obtained with VS-PR model was
0.03% for both pure substances, what is far below the 1% usu-
ally reported. The minimum and maximum relative deviations,
are —0.08 and +0.06% for cyclohexane and —0.06 and +0.10%
for n-hexadecane. This result presents a useful way to accurately
correlate compressed liquid densities of pure fluids with a small
number of parameters.

Figs. 1-6 show comparison between calculated and experi-
mental values of density, isothermal compressibility and isobaric
thermal expansion coefficient for pure fluids. In order to
perform a comparison between VS-PR and a classical cor-
relative model, Tait equation was chosen due to the small
RMSD obtained with this model for the two pure fluids
studied.

InFigs. 1 and 2, a very good agreement can be found between
the calculated and experimental data for both models while cor-
relating densities of the two fluids.

Although densities are well correlated for both models, the
analysis of derivative properties show greater differences in the
quality of correlations. The isobaric thermal expansion coeffi-
cient presented in Figs. 5 and 6 is better described by VS-PR
than by Tait model. A second derivative property for density, the
derivative of kt with pressure, is also better represented by VS-
PR. For both substances, at the highest temperature Tait model
lead to underestimation of k1 at low pressures and overesti-
mation at high pressures, while at the lowest temperature the
opposite occurs. This effect was not found for VS-PR, which
represented very well this property.
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Fig. 1. Experimental (symbols) and calculated densities for cyclohexane as a
function of pressure at several temperatures. Solid lines for VS-PR and dot lines
for Tait. x318.15K; (¢) 333.15K; ((J) 348.15K; (W) 363.15K; (A) 388.15K;
(A)413.15K.

For isobaric thermal expansion coefficient, again VS-PR
model presented better performance than 7ait model, with a
very good agreement between experimental and correlated data
for cyclohexane, and a good agreement for n-hexadecane. A
remarkable point is that both models were not able to represent
the second derivative of « with temperature (a third derivative
for density) at some pressures.
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Fig. 2. Experimental (symbols) and calculated densities for n-hexadecane as a
function of pressure at several temperatures. Solid lines for VS-PR and dot lines
for Tait. x318.15K; (¢) 333.15K; (O) 348.15K; (W) 363.15K; (A) 388.15K;
(A)413.15K.
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Fig. 3. Experimental (symbols) and calculated isothermal compressibility coef-
ficients for cyclohexane as a function of pressure at several temperatures. Solid
lines for VS-PR and dot lines for Tait. x318.15K; (¢) 333.15K; ((J) 348.15K;
(M) 363.15K; (A) 388.15K; (a) 413.15K.

5.2. Mixture models

The RMSD between calculated and experimental densities
are presented in Table 3. The regressed mixture parameters are
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Fig. 4. Experimental (symbols) and calculated isothermal compressibility coef-
ficients for n-hexadecane as a function of pressure at several temperatures. Solid
lines for VS-PR and dot lines for 7ait. x318.15K; (¢) 333.15K; ((J) 348.15K;
(M) 363.15K; (A) 388.15K; (A) 413.15K.
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coefficients for cyclohexane as a function of temperature at several pres-
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presented in Table 4 and the pure components parameters are
presented in Table 2.

The density deviation of the reference model (Redlich—
Kister) is higher than the deviations of the pure fluids reference

model, but still is essentially within experimental error [24]. It
can be noticed that using only one parameter (Redlich—Kister
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Fig. 6. Experimental (symbols) and calculated isobaric thermal expansion coef-
ficients for n-hexadecane as a function of temperature at several pressures
(legend is for pressures in MPa). Solid lines for VS-PR and dot lines for
Tait. x 6.895 MPa; () 20.684 MPa; (A) 34.474 MPa; () 48.263 MPa; ()
62.053 MPa.

Table 3
RMSD between calculated and experimental densities

Model Parameters® RMSD (kg m_3)
Redlich—Kister 10° 0.43
Redlich—Kister 2 1® 0.64
A=0b 1.42
VS-PR mix 3 0.98
k|2=l]2=l’l’l]2=0 11.52
VS-PR mix 2 13 0.69
VS-PR mix 3 1 0.69

2 Number of parameters estimated using the data reported in Ref. [24].
b Experimental pure component data is informed in this approach and not
counted in the number of parameters of the model.

2) leads to a deviation of only 1.5 times the reference deviation,
obtained with a 10 parameter model. In fact, the ideal solution
consideration (Redlich—Kister 2 with A =0) leads to a deviation
of only 3.3 times the reference, which is an indication of near
ideality in this property.

However, the use of VS-PR mix with the three parameters set
equal to zero leads to a deviation about 27 times the reference.
Estimating the three parameters, for all compositions, decrease
the deviation to 2.3 times the reference. Indeed, for these nearly
ideal mixtures, the best VS-PR result was VS-PR mix 3, with
only one mixture parameter and deviation 1.6 times the reference
value. The same RMSD was obtained with VS-PR mix 2, which
had thirteen parameters estimated (although 10 parameters are
for the pure components).

In spite of this result being a little poorer than that of the
pure components, the use of only one Redlich—Kister parameter,

Table 4

Parameters obtained with the model for mixture

Parameter Value

Redlich—Kister
ag (m3 mol~") 3.9395 x 1073
ap; (m3 mol~' K1) —1.9104 x 1077
apy (m> mol~! K—2) 2.3668 x 10~10
aip (m? mol~! MPa~1) —9.7552 x 1078
ar; (m3mol~!' K~ MPa~!) 2.9336 x 10710
boo (m? mol~!) 9.8637 x 1073
bor (m3 mol~' K~ 1) —5.1222 x 1077
bz (m? mol~! K~2) 6.6162 x 10710
b1o (m3 mol~! MPa~1) —7.5515 x 1078

b1y (m? mol~! K~ MPa~!) 2.1621 x 10710

Redlich—Kister 2

A (m® mol~1) 2.0472 x 1070
VS-PR mix 3

A (m® mol~1) 2.0782 x 1070
VS-PR mix

k; —0.7710

I —0.4439

mgj —0.3815
VS-PR mix 2

kij —0.3270

I —0.1860

m; —0.1420
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Fig. 7. Experimental (symbols) and calculated excess volumes for
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position at 34.474 MPa and at several temperatures. Dashed lines for VS-PR
mix 2 and solid line for VS-PR mix 3. x318.15K; ((J) 348.15K; (A) 388.15K.

leading to symmetry in the excess volume correlation, seems to
be compatible with the experimental error.

Figs. 7-9 show comparisons between experimental mixture
data and the VS-PR mix 2 and VS-PR mix 3 calculations for
excess volume, isothermal compressibility and isobaric thermal
expansion coefficient as functions of composition. The two for-
mer properties are presented at a fixed pressure (a middle value
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Fig. 8. Experimental (symbols) and calculated isothermal compressibility coef-
ficients for cyclohexane/n-hexadecane mixtures as a function of cyclohexane
composition at 34.474 MPa and at several temperatures. Dashed lines for VS-PR
mix 2 and solid lines for VS-PR mix 3. x318.15K; (¢) 333.15K; (OJ) 348.15K;
(M) 363.15K; (A) 388.15K; () 413.15K.
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Fig. 9. Experimental (symbols) and VS-PR mix 2 calculated isobaric thermal
expansion coefficients for cyclohexane/n-hexadecane mixtures as a function of
cyclohexane composition at 388.15 K and at several pressures. Dashed lines for
VS-PR mix 2 and solid lines for VS-PR mix 3. x6.895 MPa; (¢) 13.790 MPa;
(0) 20.684 MPa; (W) 27.579MPa; (A) 34.474 MPa; (A) 41.369 MPa; (O)
48.263 MPa; (@) 55.158 MPa; () 62.053 MPa.

was chosen) and the last at a fixed temperature (also, a middle
value was chosen).

Once the excess volume calculated with the VS-PR mix 3
model is independent of temperature and pressure, only one
curve is presented for all temperatures observed. Due to the
low values of VE, the experimental uncertainty leads to a great
relative error for this property. As it can be seen, both VS-PR
mix 2 and VS-PR mix 3 were able to represent the magnitude
of the property. At low cyclohexane concentrations, VS-PR mix
2 presented VE decreasing with increasing temperature, what
could not be confirmed from the experimental data in Fig. 7.

Fig. 8 shows kr data as a function of composition at
34.474 MPa. A significant difference between VS-PR mix 2 and
VS-PR mix 3 performances is that the former presents a great
concavity in this function than the last model does at about mole
fraction 0.3 in cyclohexane, what is experimentally confirmed
only at the two highest temperatures. It is important to notice
that VS-PR mix 3 leads to ideal solution calculations for kT and
o mixture properties.

Analogously, VS-PR mix 2 presents a greater concavity than
VS-PR mix 3 in Fig. 9, at about mole fraction 0.3 in cyclo-
hexane, which is experimentally confirmed at middle pressures
(13.790-41.369 MPa) only.

6. Conclusion

The densities of binary mixtures of cyclohexane and n-
hexadecane (including pure components) were modeled in the
temperature range of 388.15-413.15K and pressures up to
62.053 MPa through classical EOS and correlation models,
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along with the proposals of this work for a soft co-volume for
the Peng—Robinson and Patel-Teja EOS, and a volume scaled
Peng—Robinson model (VS-PR). The VS-PR model correlates
pure component experimental densities with deviations essen-
tially within experimental error, needing only five adjustable
parameters. The performance of the proposed model was supe-
rior to those of classical approaches, e.g. Tait and volume
translation models. Moreover, the isobaric thermal expansion
and the isothermal compressibility coefficients were also very
well described by the model.

When modeling the mixture data, due to the near ideality
of the mixture, the best choice seems to be calculating pure
component densities with the VS-PR model and estimating the
first term constant parameter of the Redlich—Kister expansion,
which leads to a deviation 1.6 times the estimated experimen-
tal error. An alternative with the same deviation was to include
mixing and combining rules and three binary adjustable param-
eters, and re-estimate the pure component parameters. The two
alternatives led to a good representation of mixture properties,
with one superior to the other at some conditions. This switch
in best model performance indicates that the hypothesis of ide-
ality is not suitable for all conditions studied, if high accuracy
is needed.

Although only one mixture was studied, the presence of short
and long chain hydrocarbons, with mixture asymmetry in chain
length, allowed an interesting test for the proposed modeling.

These results point out to a promising tool in correlating accu-
rately experimental densities of pure compressed fluids, with
only a few parameters (five), with better results than classical
approaches. For near ideal mixtures, one more parameter is nec-
essary for accurate modeling. Furthermore, efforts are needed if
accuracy is desired in higher order derivatives of density with
respect to temperature, pressure, and composition, which can
be easily done in this framework by, for example, by proposing
other temperature dependencies for the volume scaling function.
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